causalQual_rd.Rd
Fit local polynomial regression models for qualitative outcomes to estimate the probabilities of shift at the cutoff.
causalQual_rd(Y, running_variable, cutoff)
An object of class causalQual
.
Under a regression discontinuity design, identification requires that the probability mass functions for class \(m\) of potential outcomes are continuous in the running variable (continuity). If this assumption holds, we can recover the probability shift at the cutoff for class \(m\):
$$\delta_{m, C} := P(Y_i (1) = m | Running_i = cutoff) - P(Y_i(0) = m | Running_i = cutoff).$$
causalQual_rd
applies, for each class \(m\), standard local polynomial estimators to the binary variable \(1(Y_i = m)\). Specifically, the ruotine implements the
robust bias-corrected inference procedure of Calonico et al. (2014) (see the rdrobust
function).
Di Francesco, R., and Mellace, G. (2025). Causal Inference for Qualitative Outcomes. arXiv preprint arXiv:2502.11691. doi:10.48550/arXiv.2502.11691 .
## Generate synthetic data.
set.seed(1986)
data <- generate_qualitative_data_rd(100, outcome_type = "ordered")
Y <- data$Y
running_variable <- data$running_variable
cutoff <- data$cutoff
## Estimate probabilities of shift at the cutoff.
fit <- causalQual_rd(Y, running_variable, cutoff)
summary(fit)
#>
#> ── CAUSAL INFERENCE FOR QUALITATIVE OUTCOMES ───────────────────────────────────
#>
#> ── Research design ──
#>
#> Identification: Regression Discontinuity
#> Estimand: Probability Shifts at the Cutoff
#> Outcome type:
#> Classes: 1 2 3
#> N. units: 100
#> Fraction treated units: 0.51
#>
#> ── Point estimates and 95\% confidence intervals ──
#>
#> Class 1: -1.210 [-1.676, -0.744]
#> Class 2: -0.075 [-0.145, -0.006]
#> Class 3: 1.281 [ 0.811, 1.750]
plot(fit)